
Commentaries
on Problems

JUDGE TEAM
ICPC 2020 ASIA YOKOHAMA REGIONAL

Problem vs. #Teams @Freeze

#Solved vs #Teams @Freeze

cf. 2019’s #Solved vs #Teams

cf. 2018’s #Solved vs #Teams

#Solved 0 1 2 3 4 5 6 7 8 9 10 11

#Teams 0 6 9 10 17 4 7 3 1 1 2 0

0

2

4

6

8

10

12

14

16

18

Commentaries
 Decreasing order of #attempt teams
(tie-breaking by alphabetical order)

 A  B  J  G  I  E  H  C  K  F  D

A:Three-Axis
Views

Story
An object, a subset of cubes, can make
three silhouettes of squares by three
parallel lights perpendicular to its faces

Story
An object, a subset of cubes, can make
three silhouettes of squares by three
parallel lights perpendicular to its faces

Story
An object, a subset of cubes, can make
three silhouettes of squares by three
parallel lights perpendicular to its faces

Problem
An object, a subset of cubes, can make
three silhouettes of squares by three
parallel lights perpendicular to its faces

?
Can you make such an
object
to make the given
silhouettes?

Solution ()
1. Begin with the full cube

2. Remove cubes blocking the light to make a
blight cell

3. Check if the remaining cubes make the
silhouettes

Removal of

blocking
cubes

B: Secrets of
Legendary
Treasure

Problem (1/2)
Numbers from 1 to X were partitioned into
two lists, each sorted in ascending order,
but……………….

4 5 7 10 11 13

1 2 3 6 8 9 12

Problem (2/2)
Numbers from 1 to X were partitioned into
two lists, each sorted in ascending order, but
……………….

some of the numbers were lost!

Please restore the original pair of lists.
 (Any one of them is accepted when there are multiple possibilities.)

5 13

3 8 12

Solution (Greedy
algorithm)
Repeat finding where to put the least
unused number:
 The leftmost unknown pos of the either
of the list,
 such that the next right known number is
smaller. 5 13

3 8 12
1?

Solution
 [Proof outline of the greedy method] show
that “if there’s a solution that fills y (y>x) to the
greedy choice position, then filling the least value
x also leads to another solution.” Rotating {x,
x+1, …, y} in the former solution gives you the
latter.

 [Other approaches]
 Memoized search
 BFS-like search

 State (a,b) reachable  partitioning {1..a+b} into lists of
length a and b is possible without contradiction

J: Formica
Sokobanica

Formica Sokobanica
Formica Sokobanica is named after a computer
game.
A worker arranges boxes in a warehouse by
pushing them.
The worker cannot push multiple boxes
simultaneously.

Problem Description
A variant of the computer game.
• The worker is an ant.
• Topology of the field is a tree.
• The worker can push a nut to any adjacent vacant

room (AVR).

=

Problem Description:
objective
Count up the number of rooms the ant can
reach.

= U

Solution
•Depth first search
 while keeping track of if the ant is pushing a nut
or not

•Ant can enter a room if
•neither the ant is pushing nor the room contains a
nut, or

•the room has one or more AVRs

Solution
•The ant is considered to lose its nut when it
enters a room
 with ≥2 AVRs

U=

G:To be Connected,
or not to be,
that is the Question

Problem Summary
Divide the nodes into two groups (by a
threshold) and
remove edges connecting nodes in different
groups

Problem Summary
Make the subgraph connected by adding new
edges

1. New edges must connect nodes in different
groups

2. Each node can be incident with at most
one new edge

Necessary Conditions
Let be the graph where each connected
component corresponds to a node

 is necessary for connectivity

Necessary Conditions

𝐺𝑠
𝐺𝑙

(* is the number of connected components of
)

Necessary Conditions

𝐺𝑠
𝐺𝑙

(* is the number of connected components of
)

This is actually
sufficient

Compute Values
The numbers of nodes and connected
components for
can be calculated by checking nodes from
smaller values

Same for by checking nodes from larger
values

Summary
1. Calculate the numbers of nodes and
connected components for two groups with
each possible threshold

2. Find the minimum threshold satisfying the
necessary condition

The total time complexity is

I:High-Tech
 Detective

Problem Description
You are given a list of events describing the entry and the
exit of persons.
 - Each ID is appeared once for its entry and once for its exit.
 - Some of the ID(s) are missing.

Your task is to calculate the number of consistent ways to fill
the missing ID(s) modulo 1,000,000,007.

1

: Visitor entered.

: Visitor exited.

? ?? 2 4 ? 4

1 2 31 2 4 3 4

1 3 21 2 4 3 4

1 3 23 2 4 1 4

Note: We cannot exit before entry

1 2 33 2 4 1 4
×𝑖

𝑖

Solution
We can categorize ID(s) into the following four groups:

 - Case A: Both the entry and the exit logs are
missing.

 - Case B: Only the entry log remains.

 - Case C: Only the exit log remains.

 - Case D: Both logs remain.

We can safely exclude the case D’s logs from the input.

? ?

𝑖 ?

?

𝑖
𝑖
𝑖

1 ? ?? 2 4 ? 4

×

Solution
Basic idea is to determine the cases for missing IDs from left to right.

For the case A and B, it is enough to remember #(unclosed IDs)
(having entered but not having exited yet) at i-th position.
 - For the case A, we determine each ID at its entry.
For the case C, it is not necessary to determine each ID for its entry.
 - We can determine its ID at its exit.

The following values can be calculated in O() time complexity by
Dynamic Programming (DP).
 dp[i][I_caseA][I_caseB] := #combinations at the i-th event where
 I_caseX = #(unclose IDs) of the case X (X ∈ {A, B, C})
 (I_caseC can be uniquely determined by i, I_caseA, and
I_caseB).

1 * 31 2 ?

B C BCas
e

A

Solution
By determining the case A’s ID at its exit, we can combine
the case A
with C.

The following values can be calculated in O() time
complexity by DP.

 dp[i][I_caseAC] := #combinations at the i-th event
where
 I_caseAC = #(unclose IDs) of the case A and C.

1 * *1 2 ?

B A
C

BCas
e

A
C

E: Jewelry Size

Story
- Given lengths of the edges of a
polygon.

Story
- There are many polygons each of
which has the edges with the given
lengths.

Story
- Your task is to find a polygon that
has the circumscribed circle and
print its radius.

Solution
Fixing radius to an approximate value,
compute angle

Center

Solution
There are two patterns:

Solution
Type 1 All the sum of angles is :

Solution
Type 2 The maximum angle is equal to
the sum of the other angles:

Where the maximum length of the given edge
lengths:

Solution
The minimum candidate radius:

Solve one of the nonlinear equations:

or

with the bisection method, the Newton method,
etc.

Solution
Type 1: minimum radius

 maximum radius

 max length of circumference

 max radius

 input example

 1000

 6000 6000 6000 … 6000

Solution
Type 2: minimum radius

 maximum radius

 and

 input example

 1000

 6000 7 7 7 7 7 7 7 6 6 6 … 6

H: LCM of
GCDｓ

Problem
Find LCM of GCDs of the subsets of a given multiset of
integers.

The subsets are those obtained by excluding some of the
members of the given integer set.

Its naïve implementation requires taking GCD times, which is
too computationally heavy to meet the time constraint.

GCD, LCM, and
Factorization

Assume that the members of a set are factorized as

 where is the -th prime. With

then GCD and LCM of all the members of the set are

When GCDs of subsets excluding members are

, factorized as , then the value to computed is .

is the smallest among the members of Thus, those
subsets excluding members with the largest have the
smallest So, is the -th largest among all the members
of .

Finding the -th Largest Factor
Based on a Specific Prime
 When the largest factors based on prime among are
kept in an array, say “top[+1]”, a new member can be
incorporated to it by the following procedure.

tmp =
for x in 0..k:
top[x], tmp ← min(top[x], tmp), max(top[x], tmp)

tmp =
for x in 0..k:
top[x], tmp ← gcd(top[x], tmp), lcm(top[x], tmp)

 As the elements of the array “top” and are powers of , the max
and min operations can be substituted by GCD and LCM.

Finding the -th Largest Factors
Based on All the Primes

 The procedure described above can be applied to all the
factors based on all the primes simultaneously, as GCD and
LCM work for factors based on different primes independently.

tmp =
for x in 0..k:
top[x], tmp ← gcd(top[x], tmp), lcm(top[x], tmp)

 Applying this procedure through all the elements leaves the
desired value in “top[k]”. This algorithm requires computing
GCD and LCM only times.

 This operation is associative on sets of integers. As the
sequence of integers remains almost the same for all the
queries, building a segment tree is beneficial. Building the
tree requires calls of GCD and LCM, and only calls are
required for each query and update.

C:Short
Coding

Problem 1/2
Find a program with the fewest
possible number of lines to solve a
given maze.

.##S...##.

..#...#...

..#...#...

.###...##.

..........

..........

.##....##.

.#.#..#...

.##...#...

.#.....G#.

S : Start
G : Goal
. : Vacant cell
: Filled cell

Problem 2/2
You can use only the following
commands:

Command Description

GOTO l Goto the l-th line in the program.

IF-OPEN l Goto the l-th line in the program if can move
forward

FORWARD Move forward

LEFT Turn left

RIGHT Turn right

Solution
Any maze can be solved by the left-hand
rule algorithm.

The number of lines of a solution

 Brute-force search + simulation

LEFT
IF-OPEN 5
RIGHT
GOTO 2
FORWARD

Estimation
 How many valid programs?

◦ GOTO 1, …, GOTO 4
◦ IF-OPEN 1, …, IF-OPEN 4
◦ FORWARD, LEFT, RIGHT

 How many states in a simulation (to check one
program.)

11 kinds of commands per line

Where
in maze

Which
direction

Which
line in the program

K:Suffixes
may Contain
Prefixes

Problem
Given a target string

Bullet string s has n suffixes, s(1) … s(n)

Score = sum of LCP(target, s(i))

Find bullet string, print the maximum score
LCP = length of longest common prefix

Solution
1. Build automaton

2. Dynamic programming

Automaton
 Forward edge makes suffixes longer

aba
b

bab
ab
b
.

abab
c

babc
abc
bc
c

Automaton
o Backward edge fixes some LCP scores
oPrecalculate backward edge scores

aba
b

bab
ab
b
.

aba
ba

baba
aba
ba

a

Fixed score
4

Dynamic programming
o dp(i, j) = maximum score
oi letters of the bullet string
oj-th node on the automaton

oForward edge from j to j+1
odp(i+1, j+1) ← max(dp(i+1, j+1), dp(i, j))

oBackward edge from x to y
odp(i+1, y) ← max(dp(i+1, y), dp(i, x) + score(x, y))

Dynamic programming
oO(anm)
oa : kinds of letters, 26
om : length of target string
oDFA has O(am) edges

oO(nm)
oNFA has O(m) edges

F: Solar Car

Problem Description
Number of poles are placed at the field.
Drives a car from pole s to t, and then from t to
u within shortest route.
Poles cast infinitely long shadows, and the car
cannot go across them.

First, s and u are chosen
from each range, and t is
chosen to maximize the
length of the path.

Solution
1. Find the shortest path between each pair of

poles.
• O(n2)

2. Find t for all pairs (s, u).
• O(n2)

3. Answer the queries.
• Find cumulative sum and answer each

query in O(1)
• O(n2+q)

Step 1. (slow version
O(n3))

Find the shortest path between each pair of
poles (s, x).

Find convex hull O(n2)
times

Step 1. (fast version
O(n2))

Find the shortest path between each pair of
poles (s, x).

updat
e

Find all convex hull from
s
in O(n) times

Step 2. O(n2)
Find t for all pairs (s, u).

Let f(s, u) = t such that
• The shortest route of s -> t -> u is clockwise.
• t is chosen to maximize the shortest route

The answer is
 max(dist(s, f(s, u)) + dist(u, f(s, u)),
 dist(s, f(u, s)) + dist(u, f(u, s)))

Property: f(s, u-1) <= f(s, u) <= f(s+1, u)
• Can be speeded up to O(n2)

D:Colorful
Rectangle

Task
There are red, blue, green points on a plane.

Find the shortest perimeter of a colorful
rectangle.

Colorful Colorful Not Colorful

Two types
By considering rotations and color
swapping, we only need to consider the
following two types of arrangements.

Type1 Type2

Type 0 (Easy problem)
Sort points by x

For each p

 maximize q.x + q.y

 s.t. q.y p.y

 Segment Tree (Range maximum query)

O(n log n)

Type 0 (Easy problem)
Sort points by x

Initialize segtree T

For each p

 if p is red

 T.insert(p.y, p.x+p.y)

 if p is green

 p.x+p.y-T.query(p.y)

Type 1
Sort points by x

Initialize segtree R and B

For each p

 R.insert(p.y, p.x+p.y)

 B.insert(p.y, R.query(p.y))

 p.x+p.y-B.query(p.y)

O(n log n)

Type 2 (Difficult)
Sort points by x

For each g

 minimize b.y – r.y – r.x

 s.t. r.y g.y b.y and r.x b.x

 Segment Tree (Range Update + Point
Query)

O(n log n)

Type 2 (Difficult)
Each segment [s,t) keeps three values

1. minimum – r.x – r.y s.t. r.y s

2. minimum b.y s.t. t b.y

3. minimum b.y – r.y – r.x

 s.t. r.x b.x and r.y s and t b.y

Answer: g.x + min val3 s.t. s g.y < t

val1(P) = min – r.x – r.y
val2(P) = min b.y

val3(P) = min b.y – r.y – r.x s.t. r.x b.x

val1(L)
val2(L)
val3(L)

val1(R)
val2(R)
val3(R)

s (s+t)/2 t
y

x

Push down

val1(L)=min(val1(L), val1(P))
val2(L)=min(val2(L), val2(P))
val3(L)=min(val3(L), val3(P), val1(L)+val2(P))

Key
Property

	Slide 1
	Problem vs. #Teams @Freeze
	#Solved vs #Teams @Freeze
	cf. 2019’s #Solved vs #Teams
	cf. 2018’s #Solved vs #Teams
	Commentaries
	Slide 7
	Story
	Story
	Story
	Problem
	Solution ()
	Slide 13
	Problem (1/2)
	Problem (2/2)
	Solution (Greedy algorithm)
	Solution
	Slide 18
	Formica Sokobanica
	Problem Description
	Problem Description: objective
	Solution
	Solution
	Slide 24
	Problem Summary
	Problem Summary
	Necessary Conditions
	Necessary Conditions
	Necessary Conditions
	Compute Values
	Summary
	Slide 32
	Problem Description
	Solution
	Solution
	Solution
	Slide 37
	Story
	Story
	Story
	Solution
	Solution
	Solution
	Solution
	Solution
	Solution
	Solution
	Slide 48
	Problem
	GCD, LCM, and Factorization
	Finding the -th Largest Factor Based on a Specific Prime
	Finding the -th Largest Factors Based on All the Primes
	Slide 53
	Problem 1/2
	Problem 2/2
	Solution
	Estimation
	Slide 58
	Problem
	Solution
	Automaton
	Automaton
	Dynamic programming
	Dynamic programming
	Slide 66
	Problem Description
	Solution
	Step 1. (slow version O(n3))
	Step 1. (fast version O(n2))
	Step 2. O(n2)
	Slide 72
	Task
	Two types
	Type 0 (Easy problem)
	Type 0 (Easy problem)
	Type 1
	Type 2 (Difficult)
	Type 2 (Difficult)
	Slide 80

